Supervised Machine Learning (SML), a Branch of Artificial Intelligence, in Microscopic Image Segmentation and Measurement

Christo Christov Histology Department INSERM U1256, NGERE Laboratory of Fetal and Placental Pathology

Nancy

WIT

christo.christov@univ-lorraine.fr

Overview

examples

Jourr

machine learning (ML) in the context of artifical intelligence

 microscopic image segmentation in the context of supervised machine learning (SML)

-109/2021The form Machine Learning (ML) as a Branch of Artifical Intelligence journées so

Artifical intelligence (AI)

- symbolic AI
 - learning via formulae and rules
 - produces « logical » conclusions
 - mimics repetitive rigid tasks
 - programming (coders)

- subsymbolic AI
 - learning via experience
 - produces associative results
 - mimics the human brain
 - machine learning

in-between methods

Table 1

Symbolic vs Sub-symbolic methods characteristics

	Symbolic	Sub-symbolic	
5	Symbols	Numbers	
	Logical	Associative	
	Serial	Parallel	
	Reasoning	Learning	
	von Neumann machines	Dynamic Systems	
	Localised	Distributed	
	Rigid and static	Flexible and adaptive	
	Concept composition and	Concept creation, and	
	expansion	generalization	
	Model abstraction	Fitting to data	
	Human intervention	Learning from data	Ilkou & Koutraki. Proceedings of the CIKM 2020 Workshops
	Small data	Big data	
	Literal/precise input	Noisy/incomplete input	

Supervised Machine Learning (SML)

Symbolic AI \rightarrow A paradigm with high explainability but low accuracy performance

- A cat:
 - has 4 paws
 - has 2 ears
 - has long moustaches
 - purs
 - meows
 - claws
 - cuddles up
 - drinks milk
 - may piss in shoes
 - ad infinitum???

Subsymbolic AI \rightarrow A paradigm with low explainability but high accuracy performance

A cat: show some images

https://www.bbc.com/ 07.09.2021

Check for updates

091202

OPINION ARTICLE

Developing open-source software for bioimage analysis:

opportunities and challenges [version 1; peer review: 2

approved]

Florian Levet^{1,2}, Anne E. Carpenter³, Kevin W. Eliceiri⁴, Anna Kreshuk⁵, Peter Bankhead⁶, Robert Haase⁷

	Туре	Total lines of code	Commits in 2020	Citations in 2020	Development time since project started (in months)	Timeline (start-end)
JACoP ¹⁵	Plugin	2,400	3	358	8	[2005-ongoing]
SR-Tesseler/ PoCA	Software	100,800	1	56	75	[2012-ongoing]
clij/clij2/ assistant	Library	100,000	2,500	12	20	[2018-ongoing]
QuPath	Software	110,000	570	655	60	[2016-ongoing]
ilastik	Software	155,000	910	442	200	[2011-ongoing]
CellProfiler	Software	280,770	492	1,740	216	[2003-ongoing]
Bio-Formats	Library	1,502,214	573	245	180	[2006-ongoing]
ImageJ/FIJI	Software	2,024,516	2,934	44,400	432	[1997-ongoing]
OMERO	Software	2,171,241	3,667	361	420	[2003-ongoing]
IDR	Repository	16,517,904	1,756	76	180	[2016-ongoing]

Table 1. Size, impact and timeline of a selection of open-source tools.

Free (or not so free) software packages to perform pixel segmentation by SML

Carl Zeiss GMBH

Waikato Environment for Knowledge Analysis, New Zealand

Machine learning models cheat sheet

λ

Supervised learning	Unsupervised learning	Semi-supervised learning	Reinforcement learning
Data scientists provide input, output and feedback to build model (as the definition) EXAMPLE ALGORITHMS: Linear regressions • sales forecasting • risk assessment Support vector machines • image classification • financial performance comparison Decision tree • predictive analytics • pricing	Use deep learning to arrive at conclusions and patterns through unlabeled training data. EXAMPLE ALGORITHMS: Apriori • sales functions • word associations • searcher K-means clustering • performance monitoring • searcher intent	Builds a model through a mix of labeled and unlabeled data, a set of categories, suggestions and exampled labels. EXAMPLE ALGORITHMS: Generative adversarial networks • audio and video manipulation • data creation Self-trained Naïve Bayes classifier • natural language processing	Self-interpreting but based on a system of rewards and punishments learned through trial and error, seeking maximum reward. EXAMPLE ALGORITHMS OPLIGATION OPLIGATION OPLIGATION OPLIGATION OPLIGATION OPLIGATION OPLIGATION OPLIGATION OPLIGATION OPLIGATION OPLIGATION OPLIGATION
ourned			∞2020 TECHTARGET. ALL RIGHTS RESERVED T

Deep Learning in Microscopy

nature portfolio

nature > collection

COLLECTION | 28 NOVEMBER 2019

Deep learning in microscopy

Th<u>e December 2019 issue of Nature Methods</u> features a focus on Deep Learning in Microscopy. In this web collection, related content featured in the Nature journals is highlighted to celebrate these technological advances.

Recent research papers can be found under Research; Reviews, Perspectives, and news features under Comments and Reviews. These publications are selected by the editors of Nature Journals and this collection will be regularly updated throughout the year.

The supervised machine learning (SML) paradigm in image segmentation

The supervised machine learning (SML) paradigm in image segmentation combines the best of 2 worlds

No magic wand: garbage in garbage out!!!

Microscopic image segmentation in the context of ML (segmentation: identification of objects of interest):

- semantic (pixels according to their properties)
- instance (objects according to their properties) (Deep Learning)

Journée

Image segmentation: obtain a binary mask $(1\rightarrow 4)$

An integrated approach based on color, edge and texture, etc. detection: artificial (robotic) vision

An integrated approach based on color, edge and texture detection: spectral image analysis, wavelets

set of metrics designed to quantify the perceived structure of an image

A clear definition of texture does not exist, it can be understood as a group of image properties that relate to our intuitive notions of rugosity and smoothness

(Haralick, 1979)

Why and when use texture analysis?

The human eye is able to discriminate between 1-64 textures at a time;

computer programs discriminate 1-4095 textures at a time

Jouri

SML teaches users about their images

Integrating texture and edge information for segmentation: SML may use hundreds of filters impenetrable to the operator

Integrating texture and edge information for segmentation: SML may use hundreds of filters impenetrable to the operator

symmetry mean	569.0	1.811619e-01	1000	1.957000e-01	3.040000e-01	Iraining and validation loss Iraining and Val
fractal dimension mean	569.8	6.279761e-02		6.6120000-02	9.744000e-02	Taining loss
radius se	569.0	4.051721e-01		4.789000e-01	2.873000e+00	06- 09- 09-
texture se	569.0	1.216853e+00		1.474000e+00	4.885000e+00	
perimeter se	569.0	2.866059e+00		3.357000e+00	2.198000e+01	05-
area se	569.0	4.033708e+01		4.519000e+01	5.422000e+02	
smoothness se	569.0	7.040979e-03		8.146000e-03	3.113000e-02	9 04 B
compactness_se	569.0	2.547814e-02		3.245000e-02	1.354000e-01	07
concavity_se	569.0	3.189372e-02		4.205000e-02	3.960000e-01	13 June
concave.points_se	569.0	1.179614e-02		1.471000e-02	5.279000e-02	021 061
symmetry_se	569.0	2.054230e-02		2.348000e-02	7.895000e-02	
fractal_dimension_se	569.0	3.794904e-03		4.558000e-03	2.984000e-02	
radius_worst	569.0	1.626919e+01		1.8790000+01	3.604000e+01	Epochs
texture_worst	569.0	2.567722e+01	-	2.9720000001	4.954000e+01	
perimeter_worst	569.0	1.072612e+02		1.254000e+02	2.512000e+02	
area_worst	569.0	8.805831e+02		1.084000e+03	4.254000e+03	
smoothness_worst	569.0	1.3236862-81		1.460000e-01	2.226000e-01	
compactness_worst	569.0	2.542650e-01		3.391000e-01	1.058000e+00	
concavity_worst	569.0	2.721885e-01		3.829000e-01	1.252000e+00	ZEN
concave.points_worst	569.0	1.146062e-01		1.614000e-01	2.910000e-01	
symmetry_worst	569.0	2.900756e-01		3.179000e-01	6.638000e-01	
THE CON_ MAINTERS DON NOT 20	569.0	8.394582e-02		9.208000e-02	2.075000e-01	
						Carl Zeiss GMBH

Les Voies du Seigneur sont impénétrables :)

idation accuracy

Training acc Validation acc

Examples:

 original image + a pseudocolor map segmented and used for measurement

measured parameters

statistical comparisons

coloration / IHC

9120

Placenta: evaluation of trophoblast hyperplasia:

- measured parameters:
 - % trophoblast area of villous area
 - ratio of trophoblast outer to inner perimeter
- CK7 immunostaining

Images and IHC: courtesy to Dr Jelena Martinovic

Control example images

S

#1

Drepanocytosis example images

Results villi (160 + 232)

Myocardium: myocardial fibrosis in a KO mouse model of fibrotic cardiomyopathy:

- measured parameter: ratio fibrosis / cardiac muscle (%)

- coloration Sirius Red

Myocardial fibrosis in a KO mouse model Sirius Red

SML teaches users about their images

Green/Red*100 (fibrosis) = 1.0 %

Myocardial fibrosis in a KO mouse model: Sirius Red

SML teaches users about their images

Red/Green*100 (fibrosis) = 6.3 %

Summary fibrosis: O are animals and — are medians

#2

Aorta: desorganization of elastic fibers in a KO mouse model aortic aneurysms:

 measured parameter: % areas of the 3 elastic fiber compartments in an elastic arteria media

- coloration: Elastica – van Gieson

CONTROL CASE A14 M2

EXPERIMENTAL CASE C36 M1

Lamellae plus struts

Interlamellar elastic fibers

Smooth muscle cells

SML teaches users about their images

Interlamellar elastic fibers

Smooth muscle cells

Image represents the color mask of a mosaic of 12 adjacent x40 images (a reconstruction of the entire tissue section) used to assess area ratios

RESULTS: AREAS % OF ALL MEDIA AREA

Two control (A14M2, A18F1) and two experimental (C36M1, C29F1) cases of all 5 cases had sufficient coloration quality to be examined

It seems that the experimental group shows a relative augmentation of interlamellar elastin at the expense of the thinning of lamellae and struts

MEASURES: THICKNESSES AND NUMBERS

Thickness smooth muscle cell layer

Number of elastin struts per 100 μ m of lamellar length

Liver: steatosis and fibrosis in a mouse model of NASH:

measured parameters

- fibrosis (%)
- steatosis (%)
- macrovesicular steatosis of all steatosis (%)
- size macrovacuoles

Sirius Red

Example KOMCDHF (43/14)

Steatosis MF: 12% Macrovesicular steatosis: 3% Vacuoles: 1698 Mean size vacuoles: 9 μm² Mean size macrovacuoles: 104 μm²

Fibrosis MF: 0.9%

Example WTMCDHF (35/15)

Steatosis MF: 45% Macrovesicular steatosis: 83% Vacuoles: 1025 Mean size vacuoles: 53 μm² Mean size macrovacuoles: 368 μm²

Fibrosis MF: 7.0%

Rounds are mean values per animal and lines are medians; Conover post-test p-values, further adjusted by the Benjamini-Hochberg FDR method, after a significant Kruskal-Wallis test (p < 0.0001)

Mann & Whitney U-test

#4

Invading breast cancer: a competition example image

measured parameters

numbers of cells expressing 3 different antigenes

Multiplexed IHC: 6-10 labels, ISH, others

https://www.humancellatlas.org

Multiplexed immunohistochemitry

Final result

Nuclei segmentation

Modified Voronoi diagram of cell borders

Nuclei reduced to 1 px centroids: seeds

Multiplexed immunohistochemitry

Light blue: 511 (76%)

Purple: 62 (9%)

#6

Heterochromatin	34%
Interchromatin space	10%

Heterochromatin	24%
Interchromatin space	9%

Microscopic image segmentation in the context of ML (segmentation: identification of objects of interest):

- semantic (pixels according to their properties)
- instance (objects according to their properties) (Deep Learning)

Journée

Measuring mitochondria: electron microscopy

Journe

MITOCHONDRIA : SHAPE (also Bulthuis 2018)								
PARAMETER	NOTE	REFERENCES						
Form factor (FF) Aspect ratio (AR) Roundness (R)	FF = mitochondrial complexity and branching AR = mitochondrial elongation R = mitochondrial fragmentation	Bulthuis2018, Cadete2016, Chen2017 Choi2013, Dagda2008, Durand2019, Haileselassie2019, Hirabayashi2017, Jiang2018, Khraiwesh2013,Leduc-Gaudet 2015,2020, Morsci2016, O'Rourke2018, Pereira 2020, Picard2013,2015,Tang2020, Takamura2012, Twaroski2016, Zhang2017						
Mean area / perimeter ratio	High values indicate high mitochondrial interconnectivity	Dagda2008						
Mitochondrial fragmentation index (MFI)	High values indicate high mitochondrial fragmentation	Archer2012, Durand2019						

FF = perimeter^2/ $4\pi^*$ area = 1/circularity AR = major/minor axis R = 4*area/ π^* major axis^2 MFI = No. mitochondria x1 000/No. mitochondria pixels